
ArchivesSpace Technical Design Meeting, June 3-4, 2010

Summary Report on Technical Architecture
Prepared June 2010

by Mark A. Matienzo, Technical Architecture Consultant

0 Executive summary ...2
1 Background on technical planning meeting and report4

1.1 Overview ..4
1.2 Meeting structure..4
1.3 Report structure ..5

2 Results...6
2.1 Fundamental architecture ...6
2.2 Programming language and application frameworks7
2.3 Persistence/storage layer...8
2.4 Import/export ..10

2.4.1 Overview ...10
2.4.2 Import formats ...10
2.4.3 Import containers...11
2.4.4 Mapping layer..12
2.4.5 Additional considerations ..13

2.5 Discovery..13
2.5.1 Overview ...13
2.5.2 Architectural design...14
2.5.3 Indexing layer ..14
2.5.4 Search protocols ..15
2.5.5 Mechanisms for harvesting and syndication16

2.6 User interface..17
2.7 Authentication ..19
2.8 Authorization ..20
2.9 Workflow management ..21
2.10 Reporting ..22
2.11 Additional recommendations by meeting attendees22

2.11.1 Overview ...22
2.11.2 Project management and development methodology........................23
2.11.3 Community development and involvement.......................................23
2.11.4 Integration concerns ..24
2.11.5 Multi-tenancy...24
2.11.6 Licensing ...25

3 Addenda..26
3.1 List of meeting attendees..26
3.2 Background Readings and Discussion of Architectural Areas...................27

Prepared June 2010 by Mark A. Matienzo, Technical Architecture Consultant, for ArchivesSpace 1

0 Executive summary

Overview of meeting and report

The ArchivesSpace project team hosted a technical planning meeting at New York University to
seek advice on the technical architecture for the proposed development of a next-generation
archival management system based on the logical merge of Archivists' Toolkit and Archon.
Attendees included a group of invited systems architects and technical managers with expertise
in creating, deploying, and maintaining software for libraries, archives, museums, and
educational institutions. The meeting was organized into sets of breakout sessions to discuss
specific architectural areas. Once the attendees reviewed the description of the architectural area
for a given area, they nominated candidate technical solutions for that area. Following each set of
sessions, the attendees gathered in a plenary session to discuss the candidate solutions. Finally,
the attendees were given time to provide additional comments and advice to the project team for
the planning of the development for the merged application. This report summarizes these
discussions, lists identified candidate solutions, and specifies recommendations identified by the
technical architecture consultant and the meeting attendees. The report also provides discussion
of the attendees' remarks, and links to additional resources.

Fundamental architecture

The merged application should be a web application, built using principles of service-oriented
architecture (SOA) and Representational State Transfer (REST). Service-oriented architecture is
a set of design principles wherein an application's business logic or individual functions are
modularized and loosely coupled as "services" that can be accessed or consumed by client
components. Representational State Transfer is an architectural style for web applications that
defines a set of constraints for a system's architecture based on principles underlying the design
of the World Wide Web. These architectural recommendations were chosen over both building a
"thick" desktop client application (comparable to the Archivists' Toolkit) or building a web
application using SOA with a different web services layer, such as SOAP. A clearly defined
service layer allows for better separation of concerns and greater flexibility in terms of other
implementation details, such as the application's persistence layer or end-user interface.

Project management and development methodology

The development team should choose a development methodology as early as possible, and
should consider using an agile software development methodology, such as Scrum. One attendee
noted that if a non-agile methodology was chosen, the project team should have business reasons
that can be articulated to stakeholders. Development of core application architecture may be
difficult in a distributed setting, and attendees therefore urged the development team to consider
doing in-person code sprints for architecture, if possible. Integration of the application's stack
may become more complicated as development progresses, and accordingly the development
team should perform this integration as early as possible. Finally, establishing a clear testing
methodology for the application is very important.

Prepared June 2010 by Mark A. Matienzo, Technical Architecture Consultant, for ArchivesSpace 2

Community development and involvement

Development of a community around the application and providing opportunities for
participation should be prioritized. Suggestions included the creation of a regular schedule for
the ArchivesSpace team to issue announcements about the project. Several attendees specified
that the development process needed to be transparent; means to achieve this included an active
and open e-mail discussion list for developers, use of wiki software such as Confluence, and
issue tracking software such as JIRA. That the project team should create low-barrier and low-
commitment opportunities for community members to participate in the development. Providing
seemingly informal opportunities for participation in the application's development may allow
those individuals to have a greater sense of ownership in the merged application.

Integration concerns

The development team should consider specifying the ways in which the application would need
to integrate with other systems, such as digital repository software like Fedora and DSpace, as
well as identifier services such as ARK and the Handle System. In addition, given the existing
body of independent development by the Archivists' Toolkit community, the application should
be extensible and provide a command-line interface wrapper to the application's service layer.

Multi-tenancy

Multi-tenancy software architecture is a method that allows a single instance of an application to
serve multiple customers. A multi-tenant deployment can be desirable solution for organizations
or service providers who would otherwise need to maintain several instances of a single-tenant
application for a given base of clients. It provides better scalability for service providers since the
application's architectural components can be scaled based on the needs of individual tenants.
Given that multi-tenant deployment was identified as a potential goal in the AT/Archon Hi-Level
Requirements, the development team should consider committing to accommodating multi-
tenancy from the beginning of the development process. However, attendees also advised the
ArchivesSpace team that multi-tenant development was complicated. In particular, the team
should consider hiring a software architect that has done multi-tenant development before,
preferably multiple times.

Licensing

Potential nominees for licensing the application include the Apache Software License (ASL),
version 2.0, and the Educational Community License (ECL), version 2.0, which is a variant of
the Apache Software License. Several attendees suggested avoiding viral licenses, such as the
GNU Public License (GPL). Licensing will most likely have an impact on how the application is
distributed, particularly in terms of the ability of the ArchivesSpace team to create a packaged,
installer-based version of the merged application. The development team may want to consider
explicitly excluding dependencies that are under viral licenses, which is the approach taken by
the Sakai project.

Prepared June 2010 by Mark A. Matienzo, Technical Architecture Consultant, for ArchivesSpace 3

1 Background on technical planning meeting and report

1.1 Overview

On June 3rd and 4th, 2010, the ArchivesSpace project hosted a technical planning meeting at
New York University. The meeting's attendees included project staff and a group of systems
architects and technical managers (see Addendum 3.1). The goal of this meeting was to create a
technical development strategy and a set of architectural recommendations for a proposed
application resulting from a logical merge of Archivists' Toolkit and Archon. Before the meeting,
the attendees were asked to review a set of documentation, including the Archivists' Toolkit/
Archon Hi-Level Requirements compiled in January, 2010, a set of preliminary specifications for
data models for the merged application, and a background document (see Addendum 3.2)
prepared by Mark A. Matienzo, a consultant hired by the ArchivesSpace management team to
assist with the creation of the project's technical development strategy. This document included
background information on the archival domain and Encoded Archival Description; the data
model and functional "modules" of both Archivists' Toolkit and Archon; an overview of the
potential deployment requirements for the merged application; and background information and
analysis on areas of the application's architecture. The identified architectural areas were as
follows:

• Authentication
• Authorization
• Storage/persistence layer
• Import and export
• User interface
• Discovery
• Reporting
• Workflow management

These identified areas served as the primary areas for discussion during the meeting (see
"Meeting structure" below).

1.2 Meeting structure

The structure of the first day of the technical planning meeting was mostly focused around two
sets of breakout sessions. Within each set of sessions, there were three individual sessions. For
each session, the attendees signed up for one of four architectural areas (see above list) scheduled
for that set. The attendees within an individual session selected a member to take notes and
represent the group during the plenary discussions. Each session's attendees also had the option
to review the notes of previous sessions on that topic or to start over with a "clean slate." Once
the attendees reviewed the description of the architectural area for that session, they were asked
to nominate candidate solutions.

Prepared June 2010 by Mark A. Matienzo, Technical Architecture Consultant, for ArchivesSpace 4

The attendees were asked to consider the framing principles and functional requirements for the
merged application, especially in terms of the interoperability needs and deployment scenarios
identified by the ArchivesSpace team. In addition, attendees were asked to identify pros, cons,
and "show stoppers" for each of the candidate solutions whenever possible. Following each set
of sessions, the attendees gathered in a plenary session to present their notes from the sessions
and to identify particular candidate solutions. The Technical Architecture Consultant prepared an
exhaustive list of all the candidate solutions derived from notes taken during the individual
breakouts and plenary sessions.

The second day of the meeting consisted of reviewing the list of candidate solutions prepared
from the first day's notes and discussion and allowing attendees to make further nominations for
candidate solutions that had not been specified previously. Additionally, attendees had the
opportunity to reiterate any strengths or weaknesses for these individual candidate technologies.
Finally, the attendees were given time to provide any additional comments or advice to the
project team for the planning of the development for the merged application.

1.3 Report structure

The remainder of this report presents results from the meeting split into sections based upon
topic or architectural area. Some sections, such as "Import and export" and "Discovery," were
subdivided into smaller units based upon subsets of discussions that concerned an aspect of these
areas. Most sections are broken down into four subsections: potential candidates,
recommendation, discussion, and resources. Most of the potential candidates were identified
during the meeting (see "Meeting structure" above). The recommendation subsections list the
best option or set thereof that were identified by the attendees and the Technical Architecture
Consultant. However, in some cases, no recommendation could be identified; these cases are
noted as such. The discussion subsections summarize the discussions between attendees and the
ArchivesSpace team during the meeting and provide additional background or context to assist
the report's readers. The resources subsections provide references to additional material for
readers. Unless the link is directly related to a specific recommendation, readers should not
necessarily interpret this as an endorsement. If the link is not directly related to a
recommendation, it should be recognized only as supporting material or a reference model for
the particular architectural area.

Prepared June 2010 by Mark A. Matienzo, Technical Architecture Consultant, for ArchivesSpace 5

2 Results

2.1 Fundamental architecture

Potential candidates

• Web application, built using principles of service-oriented architecture (SOA) and
Representational State Transfer (REST)

• Web application, built using principles of service-oriented architecture and a different
web services layer (e.g. SOAP)

• "Thick" desktop client that runs natively on end-user machines (e.g. the existing
Archivists' Toolkit application)

Recommendation

• Web application, built using principles of service-oriented architecture (SOA) and
Representational State Transfer (REST)

Discussion

The attendees were in general agreement that the merged application should be web-based and
built using principles of service-oriented architecture (SOA), a set of design principles that allow
for a loose coupling of services combined to provide an application's functionality. Some
attendees also emphasized that a clear definition of the application's service layer would allow
for greater flexibility in terms of other implementation details, such as the application's
persistence layer or end-user interface. In addition, the attendees also expressed support for the
application's services to be defined using constraints expressed within Representational State
Transfer (REST). REST's constraints include client-server separation, server-side statelessness,
providing cacheable responses, allowing for layering of systems to ensure scalability, and
providing a uniform client-server interface using a set of additional constraints. With a
"RESTful" architecture under consideration, a few attendees also suggested that the project's
technical team should consider investigating the use of resource-oriented architecture (ROA) to
allow for full create, read, update, and delete access to any "resource" defined within the
application.

Resources

• Wikipedia: Service-oriented architecture
• Talis: Opening the Walls of the Library: SOA and Web Services at Talis
• Roy Fielding: "Representational State Transfer" (chapter from dissertation)
• Roberto Lucchi, Michel Millot, and Christian Elfers: Resource-Oriented Architecture

and REST: Assessment of Impact and Advantages on INSPIRE
• Brian Sletten: Resource-Oriented Architecture: The Rest of REST

Prepared June 2010 by Mark A. Matienzo, Technical Architecture Consultant, for ArchivesSpace 6

http://en.wikipedia.org/wiki/Service-oriented_architecture
http://www.talis.com/integration/documents/talis_SOA_white_paper_august_2009.pdf
http://www.ics.uci.edu/%7Efielding/pubs/dissertation/rest_arch_style.htm
http://inspire.jrc.ec.europa.eu/reports/ImplementingRules/network/Resource_orientated_architecture_and_REST.pdf
http://inspire.jrc.ec.europa.eu/reports/ImplementingRules/network/Resource_orientated_architecture_and_REST.pdf
http://www.infoq.com/articles/roa-rest-of-rest

• CollectionSpace: Common Services REST API documentation
• Introduction to the Atom Publishing Protocol

2.2 Programming language and application frameworks

Discussion

During the meeting, there was very little direct discussion of particular programming languages
application frameworks used to build the merged application. Choice of a particular framework
may assume that developers will be committed to developing the application using only one
programming language. Particular languages were neither explicitly nominated nor specified as a
requirement during the meeting, but much of the discussion in other architectural areas focused
on implementations specific to Java. Nonetheless, the development team is not necessarily
committed to choosing only one language given the flexibility provided in building the
application on the principles of REST and service-oriented architecture. One attendee noted that
the development team may want to consider the possibility of implementing the service layer and
the application layer using two separate languages.

The Technical Architecture Consultant and the ArchivesSpace management team also believed
that specific application frameworks could not be considered until attendees could make clear
recommendations in other architectural areas. Additionally, their consideration depends on how
"frameworks" are defined. In one sense, frameworks could include web application frameworks,
which support the development of dynamic web sites, web applications, and web services. Web
application frameworks are tied to a specific programming language as indicated above.
Example web frameworks include Ruby on Rails, Django (for Python), Symfony (for PHP),
Drupal (a PHP content management system), and Struts (for Java). Frameworks could also be
defined more specifically to refer to an established architectural platform, within the archival
domain or from a related domain such as the digital library community. This type of framework
could include Fedora, CollectionSpace, or the Qubit Toolkit. The ArchivesSpace team should
review any candidates carefully against both the requirements for the merged application and the
recommendations within this report.

Resources

• Wikipedia: Web application framework
• Ruby on Rails
• Django
• Drupal
• Symfony
• Apache Struts
• Fedora
• CollectionSpace
• Qubit Toolkit

Prepared June 2010 by Mark A. Matienzo, Technical Architecture Consultant, for ArchivesSpace 7

http://wiki.collectionspace.org/display/collectionspace/Common+Services+REST+API+documentation
http://www.atomenabled.org/developers/protocol/
http://en.wikipedia.org/wiki/Web_application_framework
http://rubyonrails.org/
http://www.djangoproject.com/
http://drupal.org/
http://www.symfony-project.org/
http://struts.apache.org/
http://www.fedora-commons.org/
http://www.collectionspace.org/
http://qubit-toolkit.org/

2.3 Persistence/storage layer

Potential candidates

• Relational database
• Object database
• XML database
• "NoSQL" non-relational database (usually document-oriented; often schemaless;

examples include CouchDB, MongoDB, and Cassandra)
• Solr
• Triple store or graph database (usually presumes data will be modeled using the

Resource Description Framework)
• Java Content Repository/Content Management Interoperability Services
• Local and/or network file system

Recommendation

• No clear recommendation overall or specifically for metadata persistence; see
discussion below

• Local and/or network file system and Java Content Repository/Content
Management Interoperability Services for digital object persistence

Discussion

Attendees at the technical planning meeting identified a variety of candidate solutions to serve as
the potential storage and persistence layer for the merged application. However, there was some
discussion about possibly separating the persistence layers for metadata and files that comprise
digital objects. However, this separation was not initially established as a requirement, nor was it
included within the background readings and discussion of architectural areas. Accordingly, the
ArchivesSpace team explicitly recommended considering distinct technologies for each of these
two areas to allow for better separation of concerns. While none of the individual candidate
technologies were completely removed from consideration, some attendees expressed concern
that certain technologies for persistence were simply too "bleeding edge" to be considered
appropriate. These concerns, which focused mostly around using either "NoSQL" databases,
Solr, or triple stores as the primary persistence layer, included consideration of finding qualified
developers, leveraging community development assistance, and deployment by institutions with
strict information technology policies.

Despite the lack of consensus around a single technology for persistence of metadata and other
application data, the meeting attendees discussed various aspects relating to the potential use of a
relational database as a persistence layer. The meeting's conveners asked if the merged
application would require a database abstraction layer and/or an object relational mapping
(ORM) layer if a relational database-backed persistence layer was chosen. Most attendees

Prepared June 2010 by Mark A. Matienzo, Technical Architecture Consultant, for ArchivesSpace 8

seemed to concur with the decision to use a database abstraction layer, but to favor MySQL as
the focus of core development. Currently, Archon supports MySQL, Microsoft SQL Server
(MSSQL), and Archivists' Toolkit supports MySQL, MSSQL, and Oracle. Despite this, much of
the install base for both applications relies on MySQL. By comparison, only two or three
institutions that have implemented Archivists' Toolkit are using MSSQL; only one AT institution
is using Oracle; and approximately 30% of the Archon deployments are using MSSQL. If there
were sufficient community interest in testing or developing the database abstraction layer for
other platforms, the ArchivesSpace team could either reassign resources or assist the community
in creating a development plan as appropriate. Furthermore, some programming languages or
application frameworks may make use of established database abstraction layers that support
multiple relational database management systems.

In terms of choosing an ORM, several attendees made repeated comments to avoid the use of
Hibernate, which is the ORM layer currently used by Archivists' Toolkit. Most attendees seemed
to agree with these comments, and those familiar with the Toolkit stated that the application's
reliance on Hibernate is one of the major barriers to the user community being able to contribute
code. Additionally, several attendees noted that choice of a specific database abstraction layer or
ORM will be partially dictated by the choice of programming language for the merged
application. Kuali Rice's persistence layer, which uses the Apache Object/Relational Bridge as an
ORM layer and the Java Persistence API, was nominated as a potential candidate if a relational
database-backed persistence layer was chosen.

In addition, the ArchivesSpace team asked the attendees to consider persistence solutions for
digital objects, given that Archon currently provides a mechanism for storage of digital objects
as part of its functionality. The meeting's conveners scoped the discussion by stating that the
merged application was not designed to act as a digital preservation system or as a full-featured
digital asset management system. In terms of providing storage, two solutions were identified.
The first solution was the use of a simple local or network file system, which could be presented
to the application as a directory containing the digital objects. This was identified as the baseline
requirement for the functionality. Additionally, several attendees nominated the use of either a
persistence mechanism that complied with either the Java Content Repository specification or the
Content Management Interoperability Services specification. These specifications act as
abstraction layers over enterprise content management systems and ensure a high-level of
interoperability. Using these specifications would allow the application to be packaged with a
particular content management layer and also allow implementers to substitute another according
to institutional preference or policy.

Resources

• Wikipedia: Object-relational mapping
• Kuali Rice: JPA Conversion Guide
• JSR 283: Content Repository for JavaTM Technology API Version 2.0
• OASIS Content Management Interoperability Services Technical Committee

Prepared June 2010 by Mark A. Matienzo, Technical Architecture Consultant, for ArchivesSpace 9

http://en.wikipedia.org/wiki/Object-relational_mapping
https://test.kuali.org/confluence/display/KULRICE/JPA+Conversion+Guide
http://jcp.org/en/jsr/detail?id=283
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=cmis

2.4 Import/export

2.4.1 Overview

Discussion

The general consensus of the meeting attendees was that planning the architecture related to
import functionality was considerably more complicated than that of any aspect of export
functionality. Accordingly, much of the discussion in the breakout sessions focused on aspects
related to import functionality. In particular, a few attendees articulated a clear difference
between specific import "formats," or schemas for data to be imported into the application, and
import "containers," or serializations of the data transmitted to the application for import. The
attendees also recognized a clear need for a mapping layer that would allow translation between
import formats, internal representations of the data within the application, and export formats.

2.4.2 Import formats

Potential candidates

• Exclusive use of community-based schemas, such as MARCXML and EAD
• Exclusive use of a use of ArchivesSpace-specific schemas
• Use of community-based schemas where available/applicable, with a defined application

profile containing constraints, extensions, and supplemental ArchivesSpace schemas as
appropriate

Recommendation

• Use of community-based schemas where available/applicable, with a defined
application profile containing constraints, extensions, and supplemental
ArchivesSpace schemas as appropriate

Discussion

The meeting attendees were not asked to evaluate individual schemas for inclusion as import
formats given that baseline functionality was previously identified as part of the AT/Archon Hi-
Level Requirements. Instead, attendees discussed the extent to which community-based schemas
or application-specific schemas would be appropriate for the application. While reusing existing
community-based schemas is a desirable option, the largest disadvantage in terms of relying on
them exclusively is that there are some areas of the application's functionality that do not have a
corresponding established schema. This includes both configuration-related data as well as
certain kinds of data related to the archival domain, such as accession records. The Technical
Architecture Consultant therefore recommends establishing a set of application profiles for the
application, using a combination established schemas when available, and creating a set of

Prepared June 2010 by Mark A. Matienzo, Technical Architecture Consultant, for ArchivesSpace 10

supplemental, application-specific schemas where no established schema exists. Additionally,
the project team should consider establishing a set of documented constraints or extensions for
the existing schemas to ensure a minimum of data loss upon import.

Resources

• Guidelines for Dublin Core Application Profiles

2.4.3 Import containers

Potential candidates

• XML
• Comma separated values (CSV)
• Binary

Recommendations

• XML
• Comma separated values (CSV)

Discussion

Attendees discussed potential "container" serializations used to import data into the merged
application. The community-based schemas identified as required import functionality for the
merged application are all serialized using XML. Archivists' Toolkit also supports import of
comma separated values for certain types of application data. These two import container
formats were thus identified as the primary recommendation for inclusion into the merged
application. Nonetheless, for data in CSV, one attendee recommended the creation of clearly
defined "profiles" that defined the order and structure of data to be imported. A few attendees
also suggested the possibility of creating a binary serialization of application data to exchange
between instances of the merged application. However, when presented with this option in the
plenary discussion, this possibility did not gather significant support and was therefore not
prioritized as a recommendation.

Prepared June 2010 by Mark A. Matienzo, Technical Architecture Consultant, for ArchivesSpace 11

http://dublincore.org/documents/profile-guidelines/

2.4.4 Mapping layer

Potential candidates

• Hard-coded mapping layer
• XSLT-based mapping
• Extract, Transform, and Load (ETL) tools from the data warehousing community

Recommendation

• XSLT-based mapping
• Extract, Transform, and Load (ETL) tools from the data warehousing community

Discussion

Currently, both Archivists' Toolkit and Archon have a hard-coded mapping layer for both
importing and exporting data. The attendees recognized that this approach greatly limited the
flexibility of the application and in some ways discouraged implementers from modifying the
import or export mappings. A few attendees expressed a clear desire for a mechanism that would
allow import and export mappings to be configurable by "non-programmers." Several attendees
identified XSLT stylesheets as a possible implementation for the mapping layer. This technology
was identified as a strong candidate solution particularly because it has a high level of adoption
within the archival community as a means to transform EAD finding aids into HTML and other
formats. Furthermore, there is anecdotal evidence that many individuals in the archival
community that do not self-identify as programmers have some familiarity with XSLT.

Using XSLT as the mapping layer may also allow all imported data to be first mapped to an
application-specific schema or a particular implementation profile of a community-based
schema. Some attendees suggested that all data, even that from an established schema, be
mapped to an application-specific schema that serves as the canonical representation of data
within the merged application. A number of attendees also identified Extract, Transform and
Load (ETL) tools as another potential, perhaps supplemental, implementation of the mapping
layer. In particular, ETL tools were identified as a mechanism that may assist users of other
collection management systems or tools (i.e., neither Archivists' Toolkit nor Archon) migrate
data into the merged application.

Resources

• Carol Jean Godby, Jeffrey A. Young and Eric Childress: "A Repository of Metadata
Crosswalks", D-Lib Magazine

• Wikipedia: Extract, transform, load

Prepared June 2010 by Mark A. Matienzo, Technical Architecture Consultant, for ArchivesSpace 12

http://www.dlib.org/dlib/december04/godby/12godby.html
http://www.dlib.org/dlib/december04/godby/12godby.html
http://en.wikipedia.org/wiki/Extract,_transform,_load

2.4.5 Additional considerations

Discussion

Beyond the subareas already identified, the attendees also discussed the issue of minimizing data
loss during the import and export process. During any import process, there is a clear risk for
losing data when its elements do not clearly map to fields or elements within the application's
data model. One potential solution was storing a copy of the imported data in its original
serialization format, such as storing a full MARCXML record after its elements are imported
into the application's specified fields. A number of attendees also identified a few supplemental
needs for consideration in terms of potential imports and exports, such as using the Simple
Knowledge Organization System (SKOS) for controlled vocabularies, and identifying a schema
to import and export rights statements. Finally, attendees also established that import and export
functionality must include the migration both from Archivists' Toolkit and Archon to the merged
application and between instances of the merged application.

Resources

• SKOS Simple Knowledge Organization System

2.5 Discovery

2.5.1 Overview

Discussion

Attendees at the technical planning meeting recognized that discovery could be discussed in a
number of ways. The majority of the discussion on this topic was broken out into four areas: the
overall architectural design of the application's discovery system, technologies for the indexing
layer that allow the application's data to be searchable, specific search protocols that serve as an
interface over the search index, and technologies that allow the application's data to be harvested
by or syndicated to other systems. This is a particularly important consideration given that
several attendees stated that discovery is likely to happen using interfaces external to the merged
application, such as Internet search engines like Google and federated search systems used in
academic libraries. These attendees thus stated that discovery systems designed for humans will
not be the standard for access, but that harvesters and other machine-based agents would be. One
attendee suggested that it may be helpful to consider the design of the discovery functionality of
the merged application along two axes, with one as a continuum of design between human and
machine-based agents, and the other being a continuum of optimization between search and
browse.

Prepared June 2010 by Mark A. Matienzo, Technical Architecture Consultant, for ArchivesSpace 13

http://www.w3.org/2004/02/skos/

2.5.2 Architectural design

Potential candidates

• RESTful mechanism for discovery, using best practices as defined as part of Web
architecture

Recommendation

• RESTful mechanism for discovery, using best practices as defined as part of Web
architecture

Discussion

This recommendation corresponds with the recommendation on the application's fundamental
architecture, i.e., a web application, built using principles of service-oriented architecture (SOA)
and Representational State Transfer (REST). Creating an overall RESTful application suggests,
by extension, that the discovery architecture should also be created using RESTful principles.
The discovery architecture could then also easily utilize essential parts of the World Wide Web's
specifications. For example, the application could use content negotiation in any number of
ways, including to provide representations of the application's resources in alternate languages,
alternate output formats, or using an alternate set of templates that provide search engine
optimized versions of those resources.

2.5.3 Indexing layer

Potential candidates

• Native indexing component of persistence layer
• Apache Lucene
• Apache Solr (relies upon Lucene)
• Extensible Text Framework (XTF, relies upon Lucene)

Recommendation

• Apache Solr (relies upon Lucene)
• Extensible Text Framework (XTF, relies upon Lucene)

Discussion

While both Archivists' Toolkit and Archon both use the native indexing component of the
persistence layer, most attendees agreed that using this technology within the merged application
would not be an ideal solution. This implementation could tie searching behavior directly into
the application's logic, and thus serve as a further barrier for customization. In addition, the AT/

Prepared June 2010 by Mark A. Matienzo, Technical Architecture Consultant, for ArchivesSpace 14

Archon Hi-Level Requirements identified adding a mechanism to allow for configurable
indexing or search result weighting as a high priority need for the merged application. Several of
the meeting's attendees identified using Apache Lucene as the basis as a key component of the
indexing layer.

Given the relative complexity of using and configuring Lucene, some attendees indicated a clear
preference for using Solr, a search and indexing server that provides a RESTful API for all
operations. Solr is highly configurable, and it has a considerable level of adoption in the digital
library community already as a general purpose indexing engine for metadata, including
Encoded Archival Description. Furthermore, Solr serves as the back-end to Blacklight and
VuFind, two open source discovery layers targeted at libraries. One attendee also suggested
investigating the use of the indexing components of Extensible Text Framework, or XTF, an
open source platform developed by the California Digital Library. XTF is also highly
configurable and has a proven track record working with EAD.

In addition to discussing specific technical solutions, the attendees also discussed the difficulty
of representing contextual information such as where in the hierarchy a specific keyword or
phrase was located from a user's query. Unlike descriptive metadata for bibliographic resources
and digital collections, archival description is extremely hierarchical and relies on principles of
inheritance to provide context about the materials. Implementers of archival discovery systems
have created a small number of provisional solutions to provide adequate context, but the
archival community is still lacking a set of best practices for indexing archival description.

Resources

• Apache Solr
• Extensible Text Framework
• Blacklight
• VuFind

2.5.4 Search protocols

Potential candidates

• Search/Retrieve via URL (SRU)
• OpenSearch

Recommendation

• Search/Retrieve via URL (SRU)
• OpenSearch

Prepared June 2010 by Mark A. Matienzo, Technical Architecture Consultant, for ArchivesSpace 15

http://wiki.apache.org/solr/
http://sourceforge.net/apps/trac/xtf/wiki
http://projectblacklight.org/
http://vufind.org/

Discussion

The meeting's attendees identified a need beyond the indexing layer for the application to present
a standardized interface for queries using an established client-server search protocol. Some
attendees suggested that all queries be routed through this layer rather than being submitted to
the index layer directly. In other words, this protocol layer would be exposed both internally to
the application, and optionally as a external interface to allow other systems to query the
application's data. Several attendees recommended the possibility of using Search/Retrieve via
URL, or SRU. This protocol is well-established within the library community and is RESTful in
its design, which suggests that it is potentially suited for this application.

Additionally, some attendees suggested the possibility of using OpenSearch, a search protocol
first developed by Amazon. The primary strength of OpenSearch is that it can return responses in
RSS and Atom, which are formats that are parsed with relative ease by developers with even
minimal technical knowledge. There also have been some efforts to harmonize SRU and
OpenSearch to allow for potential interoperability between the two protocols. Attendees also
acknowledged a similar lack of best practices for search protocols in the representation of
contextual information and hierarchy as was identified during the discussion of the indexing
layer for the application. Despite this gap, SRU provides a promising solution as it can return
responses using any potential schema that is identified as supported by the server.

Resources

• Library of Congress: Search/Retrieve via URL
• OpenSearch
• OpenSearch SRU Extension (Draft 1)

2.5.5 Mechanisms for harvesting and syndication

Potential candidates

• Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH)
• Atom and/or RSS feeds
• Open Archives Initiative Object Reuse and Exchange (OAI-ORE)
• Topic Maps
• XML Sitemaps
• RDFa or other microformats

Recommendation

• No clear recommendation; consider prioritizing based upon application's
requirements

Prepared June 2010 by Mark A. Matienzo, Technical Architecture Consultant, for ArchivesSpace 16

http://www.loc.gov/standards/sru/
http://www.opensearch.org/Home
http://www.opensearch.org/Community/Proposal/Specifications/OpenSearch/Extensions/SRU/1.0/Draft_1

Discussion

The attendees nominated a variety of potential mechanisms for harvesting and syndication but
there was no clear consensus around preferring any of the individual formats or mechanisms, as
each of them have distinct merits. The OAI Protocol for Metadata Harvesting is well established
in the library community. Atom and RSS feeds are easily understood by both lay users and
developers, and have served as one cornerstone for the development of "mash-ups" and
visualizations. OAI Object Reuse and Exchange is an emerging set of specifications that allow
systems to exchange information about aggregations of web resources. XML Sitemaps are a
standardized representation of a set of URLs that comprise a given website. Topic Maps allow
for the expression of the relationships between topics and their occurrences within a given body
of knowledge. RDFa, as well as other microformats, are easy to incorporate in the output
templates for human readable representations of the application's resources. Choice of one or
more of the specifications does not necessarily preclude incorporating others into the application.
Given the varying strengths of these standards and the relative easy of implementing more than
one, the ArchivesSpace team should consider prioritizing some of these methods based upon
further definition of the application's requirements and the resources available.

Resources

• OAI Protocol for Metadata Harvesting
• OAI Object Reuse and Exchange
• RFC 4287: Atom Syndication Format
• Sitemaps Protocol
• Wikipedia: Topic Maps
• W3C: RDFa Primer
• Microformats.org

2.6 User interface

Potential candidates

• "Thick" desktop client that runs natively on end-user machines (e.g. the existing
Archivists' Toolkit application)

• Dynamic web application, reliant on browser-provided functionality only (e.g.
JavaScript)

• Dynamic web application, reliant on browser plug-ins (e.g. Java or Flash)
• Dynamic web application, primarily reliant on browser-provided functionality, but with

specific functionality reliant on plug-ins as appropriate

Recommendation

• Dynamic web application, primarily reliant on browser-provided functionality, but
with specific functionality reliant on plug-ins as appropriate

Prepared June 2010 by Mark A. Matienzo, Technical Architecture Consultant, for ArchivesSpace 17

http://www.openarchives.org/pmh/
http://www.openarchives.org/ore/
http://www.ietf.org/rfc/rfc4287
http://sitemaps.org/protocol.php
http://en.wikipedia.org/wiki/Topic_Maps
http://www.w3.org/TR/xhtml-rdfa-primer/
http://microformats.org/

Discussion

The meeting's attendees quickly eliminated the option of a desktop client application from the
list of potential solutions. Reasons for its dismissal included the added complexity of managing
and supporting individual installations of the application. Most attendees supported the creation
of a dynamic web application that relied on established technologies supported by most web
browsers, such as JavaScript and CSS. This option was strongly favored over creating a web
application that relied on browser plug-ins such as Java or Flash for its dynamic functionality.
Additionally, Fluid Infusion, a JavaScript user interface library, was identified as a potential
candidate to allow for the responsiveness and application behavior comparable to desktop
applications. Some attendees also noted that the ArchivesSpace development team should
consider the possibility of requiring plug-ins for specific types of functionality if identified as
part of the application requirements. For example, the application may want to provide basic
media player functionality for video files made available in the discovery interface for the
application.

The attendees also considered a few supplemental issues related to user interface development.
One primary area of concern was whether the development team should declare a minimum set
of browser requirements for the merged application. Some attendees noted that other comparable
dynamic web applications have either defined their own set of minimum requirements or are
reusing sets defined by specific JavaScript libraries. As an example, CollectionSpace has created
a two-tiered categorization of browsers that establishes levels of support and whether user
interface bugs are considered as issues that would block the release of a given version. A few
attendees also asked the extent two which emerging Web technologies such as HTML5 Video
and HTML5 LocalStorage would be supported by the new application. These decisions would
likely have to be balanced between the minimum browser requirements and the functional
specifications developed for the merged application.

Several attendees also reiterated the need for prioritizing the accessibility of new application,
such as providing keyboard-based navigation alternatives for every area of the application's
functionality. Additionally, a few attendees also suggested that user interface elements and
application behavior degrade gracefully to ensure complete or nearly complete functionality
when a user does not have JavaScript enabled in their browser for whatever reason. Finally, a
number of attendees also urged the development team to plan for iterative user testing on the
application, which could include providing feedback on wireframes and comprehensive layouts,
and full usability testing as application functionality is developed. CollectionSpace currently
performs weekly user testing, with approximately 15-20 active participants per week. Iterative
user testing could also be a low-barrier way to have the archival community assist with the
development process for the merged application.

Prepared June 2010 by Mark A. Matienzo, Technical Architecture Consultant, for ArchivesSpace 18

Resources

• CollectionSpace: Supported Browser Environment
• Fluid Infusion
• Mark Pilgrim: "Video on the Web," Dive into HTML5
• W3C: Web Storage (Draft)

2.7 Authentication

Potential candidates

• Local, application-specific authentication
• Exclusive use/recommendation of an individual or set of single sign-on systems
• Creation or reuse of an existing pluggable authentication system

Recommendation

• Local, application-specific authentication
• Creation or reuse of an existing pluggable authentication system

Discussion

During the technical planning meeting, nearly all attendees agreed that both a local
authentication mechanism, backed by data stored in the persistence layer, was a key baseline
requirement for the merged application. Additionally, attendees clearly stated that the application
needs an abstracted, pluggable authentication layer that allows for implementers to use a
particular authentication system supported by their institution. With this in mind, much of the
discussion did not focus on providing a detailed evaluation of particular authentication
mechanisms. However, attendees recommended potential support for a number of authentication
systems, such as the Central Authentication Service (CAS), LDAP, Pubcookie, Shibboleth,
WebAuth, and OpenID. Attendees representing the perspective of information technology
managers ranked IP address-based authentication as an extremely low priority. Use of a
pluggable authentication mechanism would also allow implementers to create additional modules
that authenticate against other single sign-on systems not supported in the merged application's
initial development phases, such as institution-specific systems.

The attendees identified a number of potential issues for the architecture of the authentication
subsystem of the merged application. The primary issue was considering how to provide support
for multiple authorization regimes in a given deployment. One means to do this would be to
allow for "stacked authentication," which would allow the application to attempt authenticating
users using an administrator-ranked selection of identity providers. An alternative solution,
implemented in CollectionSpace, would be to allow individual users to specify a specific identity
provider which they authenticate against. It may also be possible to combine these two
approaches to allow for greater flexibility in the merged application. Attendees also emphasized

Prepared June 2010 by Mark A. Matienzo, Technical Architecture Consultant, for ArchivesSpace 19

http://wiki.collectionspace.org/display/collectionspace/Supported+Environment
http://wiki.collectionspace.org/display/collectionspace/Supported+Environment
http://www.fluidproject.org/products/infusion/
http://diveintohtml5.org/video.html
http://dev.w3.org/html5/webstorage/

the need to define a base authorization role for users authenticating using a particular
mechanism. For example, given an archives that is part of a university library system, users
could be defined as being part of a "university community member" role, which may have a
certain level of researcher access and would exclude any staff-specific or administrative
functionality from that role.

Resources

• CollectionSpace: Authentication Service Description and Assumptions
• CollectionSpace: CollectionSpace Identity Provider
• DSpace: Authentication (re: stackable authentication)

2.8 Authorization

Potential candidates

• Local, application-specific role and access control list (ACL) definition and management
• Extensible Access Control Markup Language (XACML)

Recommendation

• Local, application-specific role and access control list (ACL) definition and
management

• Extensible Access Control Markup Language (XACML)

Discussion

The discussion about the authorization during the meeting was divided primarily between the
consideration of options for role and access control list (ACL) management and persistence and
architectural concerns about authorization. A few authorization frameworks, such as the Zend
ACL module for PHP and Spring Security for Java, were mentioned, but there was no detailed
discussion of them clearly as candidate technologies given the lack of discussion of using
specific programming languages. One attendee stated that existing libraries may not allow for a
full abstraction of authorization for the merged application, and therefore the developers would
therefore need to tie authorization-related code more closely to the application logic than desired.

As with the authorization requirement, the ArchivesSpace team initially proposed a local,
application-specific role and access control list management tool that would store the role and
ACL definitions in the application's persistence layer. While Archon and Archivists' Toolkit both
have role functionality, currently only Archon allows administrators to configure those roles or
assign permissions granularly to individual users for individual application modules. Some
attendees also noted other applications, such as Drupal and ICA-AtoM, provide a similar level of
granularity for the role definition and permission assignment. The attendees therefore
recommended providing a similar level of functionality within the merged applications. As with

Prepared June 2010 by Mark A. Matienzo, Technical Architecture Consultant, for ArchivesSpace 20

http://wiki.collectionspace.org/display/collectionspace/Authentication+Service+Description+and+Assumptions
http://wiki.collectionspace.org/display/collectionspace/CollectionSpace+Identity+Provider+%28CS+IdP%29
http://www.dspacedev2.org/1_5_2Documentation/ch02.html#N10279

both AT and Archon, the merged application should be released with a set of five to ten
predefined roles that will suit the needs of most implementers.

One meeting attendee asked the development team to consider how the application's user
interface layer or the application's service layer would be enforcing the defined access control
lists. This attendee noted that this enforcement would need to occur at both layers. Service layers
would have to enforce the ACLs given that the would be relatively agnostic about the clients that
accessed them; providing no ACL enforcement at the service layer would therefore make the
application fundamentally insecure. By comparison, ACL enforcement would also need to occur
at the user interface level to suppress user interface components that individual users may not be
authorized to see or access. Given these divergent needs, this attendee suggested the use of the
Extensible Access Control Markup Language, or XACML, as a potential candidate to describe
access control policies for merged application.

Resources

• Drupal 6: Permissions
• OASIS Extensible Access Control Markup Language Technical Committee
• CollectionSpace: Authorization Description and Assumptions
• CollectionSpace: Design notes for authorization
• CollectionSpace: Design notes for multi-tenancy

2.9 Workflow management

Discussion

While the meeting had breakout sessions and plenary discussion dedicated to workflow
management, project staff chose to table discussion for the second day as the meeting's attendees
identified significant issues within this area. As identified in the Background Readings and
Discussion of Architectural Areas, neither Archivists' Toolkit nor Archon have tightly defined
workflow components to allow for flexibility in institutional practices. As a first step, several
attendees recommended that the development team consider categorizing potential workflows for
incorporation into two categories: automated workflows and human-based workflows, such as
those involving approval processes. Attendees also emphasized that adding a workflow authoring
tool would likely be too complicated for an initial release. Accordingly, if workflow was indeed
a necessity for the merged application, the attendees suggested that support for an established
workflow language such as the Business Process Execution Language (BPEL) be provided in the
application.

The largest concern, however, was establishing whether the application actually needed a
workflow component, as it will largely be just as much work to add "hooks" to implement
workflow into the application as it would to actually include it in the application's
implementation. Accordingly, the attendees advised the ArchivesSpace project team to establish
the workflow needs for the merged application before committing to its implementation. Several

Prepared June 2010 by Mark A. Matienzo, Technical Architecture Consultant, for ArchivesSpace 21

http://drupal.org/getting-started/6/admin/user/permissions
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://wiki.collectionspace.org/display/collectionspace/Authorization+Service+Description+and+Assumptions
http://wiki.collectionspace.org/display/%7Esanjay.dalal@berkeley.edu/Design+notes+on+authorization
http://wiki.collectionspace.org/display/collectionspace/Design+notes+for+multi-tenancy+in+CollectionSpace

attendees also urged the project team to survey the community about their workflow
requirements. One attendee added that some community members may view the addition of a
workflow component negatively, as they may believe it could remove needed flexibility from the
application.

Resources

• J. Gordon Daines and Cory Nimer, "Integrating Process Management with Archival
Management Systems: Lessons Learned," The Code4lib Journal

2.10 Reporting

Discussion

As with workflow management, project staff tabled further discussion of the merged
application's reporting component after the breakouts and plenary discussion about it. While
attendees acknowledged that the merged application would have to ship with a number of
prepackaged reports similar to those provided by Archivists' Toolkit, there was a lack of
agreement about what actually comprised the activity of reporting. Some attendees asked the
project team to determine if reporting was just an alternate representation of search results or if it
was a clearly distinct activity that needed a tightly defined set of requirements. One attendee
suggested creating a set of criteria that would assist in the project team in distinguishing between
reports for managerial decision making and reports needed for archivists to perform their day-to-
day work.

A few attendees added that there are considerable integration concerns about reporting. Most of
the existing report platforms assume that the data for reporting is stored in a relational database;
however, no conclusive recommendation was identified for the merged application's persistence
layer (see "Storage/persistence layer" above). Other attendees also suggested that there may be
little demand for "self-serve" custom reports. If this is the case, this could have significant impact
on how the development team prioritizes the implementation of functionality related to reporting.
Therefore, several attendees recommended that the project team should outsource the creation of
reports during the application's development cycle. These attendees also suggested that the
project team provide a standardized set of instructions and configuration information to allow
interested implementers to develop their own reports.

2.11 Additional recommendations by meeting attendees

2.11.1 Overview

Discussion

In addition to discussing candidate architectures for the merged application, the attendees at the
technical planning meeting were given the opportunity to provide feedback to the ArchivesSpace

Prepared June 2010 by Mark A. Matienzo, Technical Architecture Consultant, for ArchivesSpace 22

http://journal.code4lib.org/articles/1016
http://journal.code4lib.org/articles/1016

team on any additional area of concern. Attendees provided additional recommendations in three
key areas: project management and development methodology, community development and
involvement, integration concerns, multi-tenancy, and licensing.

2.11.2 Project management and development methodology

Discussion

Many attendees suggested that the development team for the merged application should choose a
particular development methodology as early as possible. In particular, several attendees
suggested that the development team consider using an agile software development
methodology, such as Scrum. One attendee noted that if a non-agile methodology was chosen,
the project team should have business reasons that can be articulated to stakeholders, including
both funders and the archival community. Even after choosing a particular development
methodology, the attendees also noted that the development team would need to determine
details such as the appropriate duration for development sprints and how to offset the work of the
various development teams. For example, in some cases, a team responsible for development of
the service layer will need to be ahead of the application and user interface layer team, and the
functional specifications team will need to be ahead of the service development team. A few
attendees also stated that development of core application architecture may be difficult in a
distributed setting, and therefore urged the development team to consider doing in-person code
sprints for architecture, if possible. Integration of the application's stack may become more
complicated as development progresses, and accordingly another attendee advised the
development team to perform this integration as early as possible. Finally, several attendees also
stressed the importance of establishing a clear testing methodology for the application, possibly
using additional tools such as a continuous integration server.

Resources

• Wikipedia: Agile software development
• Mike Cohn: Agile Estimating and Planning
• Mike Cohn: User Stories Applied: For Agile Software Development
• Wikipedia: Test-driven development
• Wikipedia: Continuous integration

2.11.3 Community development and involvement

Discussion

Attendees stressed the importance of developing a community around the application and
providing means by which the community can be involved in the application's development. In
particular, the attendees suggested that the ArchivesSpace team develop a regular schedule for
issuing announcements about the project. Several attendees specified that the development
process needed to be transparent; means to achieve this included an active and open e-mail
discussion list for developers, use of wiki software such as Confluence, and issue tracking

Prepared June 2010 by Mark A. Matienzo, Technical Architecture Consultant, for ArchivesSpace 23

http://en.wikipedia.org/wiki/Agile_software_development
http://www.amazon.com/Agile-Estimating-Planning-Mike-Cohn/dp/0131479415
http://www.amazon.com/User-Stories-Applied-Software-Development/dp/0321205685/
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Continuous_integration

software such as JIRA. A few attendees also suggested that the project team create a variety of
low-barrier and low-commitment opportunities for community members and potential
implementers to become involved. These opportunities could include active solicitation of
individuals to participate in user testing or the writing of documentation. Providing "non-
technical" users seemingly informal opportunities for participation in the application's
development may allow those individuals to have a greater sense of ownership in the merged
application.

2.11.4 Integration concerns

Discussion

Despite the meeting's overall emphasis that application required a modular design, meeting
attendees discussed a few integration concerns for the application's development. Attendees
asked the development team to consider specifying the ways in which the application would need
to integrate with other systems, such as digital repository software like Fedora and DSpace, as
well as identifier services such as ARK and the Handle System. In addition, given the
development by the Archivists' Toolkit community, a few attendees recommended that the
application should be extensible and provide a command-line interface wrapper to the
application's service layer.

Resources

• CollectionSpace: Accessing Services from your programs or scripts

2.11.5 Multi-tenancy

Discussion

Multi-tenancy is a method within software architecture that allows a single instance of an
application to serve multiple customers. Each customer, or "tenant," can configure the
application as needed or desired. Application data for a given tenant is in virtual isolation from
the data of other tenants. Multi-tenant deployment can be desirable solution if a given
organization or service provider would otherwise need to maintain several instances of a single-
tenant application for a given base of clients. In addition, it provides for better scalability for
service providers since the application's architectural components can be scaled based on the
needs of individual tenants. For example, some tenants may be given a higher performance
persistence layer than most if they have large, complex descriptions. Given that multi-tenant
deployment was identified as a potential goal in the AT/Archon Hi-Level Requirements, several
attendees suggested that the development team commit to accommodating multi-tenancy from
the beginning of the development process. However, attendees also advised the ArchivesSpace
team that multi-tenant development was complicated. In particular, one attendee urged that the
team hire a software architect that has done multi-tenant development before, preferably multiple
times. Additionally, if the project is committed to supporting multi-tenant deployment, it should
also be incorporated into the testing framework for the application.

Prepared June 2010 by Mark A. Matienzo, Technical Architecture Consultant, for ArchivesSpace 24

http://wiki.collectionspace.org/display/collectionspace/Accessing+CollectionSpace+Services+from+Your+Programs+or+Scripts

Resources

• Wikipedia: Multitenancy
• Salesforce.com: The Force.com Multitenant Architecture: Understanding the Design of

Salesforce.com’s Internet Application Development Platform
• CollectionSpace: Design notes for multi-tenancy in CollectionSpace

2.11.6 Licensing

Discussion

The attendees also spent a considerable amount of time discussing the implication of choosing an
appropriate open source software license for the project. Potential nominees included the Apache
Software License (ASL), version 2.0, and the Educational Community License (ECL), version
2.0, which is a variant of the Apache Software License. Several attendees suggested avoiding
viral licenses, such as the GNU Public License (GPL). Licensing will most likely have an impact
on how the application is distributed, particularly in terms of the ability of the ArchivesSpace
team to create a packaged, installer-based version of the merged application. One attendee noted
that given the application's code base was released under a non-viral license such as the ASL or
the ECL, a "one-click installer" could be packaged under the GPL. This would allow developers
or implementers who were not comfortable with the viral licensing of the packaged application
to download the application's dependencies that may be under viral licenses separately. Another
attendee suggested explicitly excluding dependencies that are under viral licenses, which is the
approach taken by the Sakai project. Finally, one attendee suggested the possibility of using
Creative Commons licenses for components like templates or reports that implementers may
want to share with the larger community.

Resources

• Apache Software License, Version 2.0
• Educational Community License, Version 2.0
• Wikipedia: Viral license
• Sakai: 3rd Party Licenses and Software
• Creative Commons

Prepared June 2010 by Mark A. Matienzo, Technical Architecture Consultant, for ArchivesSpace 25

http://en.wikipedia.org/wiki/Multitenancy
http://www.developerforce.com/media/ForcedotcomBookLibrary/Force.com_Multitenancy_WP_101508.pdf
http://www.developerforce.com/media/ForcedotcomBookLibrary/Force.com_Multitenancy_WP_101508.pdf
http://wiki.collectionspace.org/display/collectionspace/Design+notes+for+multi-tenancy+in+CollectionSpace
http://www.apache.org/licenses/LICENSE-2.0
http://www.osedu.org/licenses/ECL-2.0/
http://en.wikipedia.org/wiki/Viral_license
http://confluence.sakaiproject.org/display/LIC/3rd+Party+Licenses+and+Software
http://creativecommons.org/

3 Addenda

3.1 List of meeting attendees

• David Ackerman, Associate Vice President, ITS .edu Services/Executive Director, NYU
Libraries DLT Services, NYU

• Robin Dale, Director of Digital & Preservation Services, LYRASIS
• Luc Declerck, Associate University Librarian, Technology Services, UC San Diego
• Jon Dunn, Associate Director for Technology, Indiana University Digital Library

Program, Indiana University
• Tom Habing, Programmer/Analyst, Digital Library Research, University of Illinois
• Susan Harum, Director, ArchivesSpace, University of Illinois
• Brian Hoffman, Digital Library Publication and Access Manager, NYU
• Mark Matienzo, Digital Archivist in Manuscripts and Archives, Yale University, and

Technical Architecture Consultant, ArchivesSpace
• Al Matthews, Programmer at Robert W. Woodruff Library, Atlanta University Center
• Mark McFarland, Associate Director for Digital Initiatives, University of Texas / TDL
• David Millman, Director, Digital Library Technology Services, NYU
• Megan Forbes, Collectionspace Project Manager, Museum of the Moving Image
• Joseph Pawletko, Software Systems Architect/Technical Lead, Digital Library

Technology Services, NYU
• Patrick Schmitz, Semantic Services Architect/CollectionSpace Co-Technical Lead, UC

Berkeley
• Scott Schwartz, Archivist for Music and Fine Arts, Sousa Archives and Center for

American Music, University of Illinois
• Paul Sorenson, Programmer, Archon, University of Illinois
• Nathan Stevens, Programmer/Analyst, Digital Library Technology Services, NYU
• Mike Teets, Vice President, Innovation, OCLC
• Zach Thomas, software engineer, Aeroplane Software/ Sakai
• Brian Tingle, Technical Lead, Digital Special Collections, California Digital Library
• Peter Van Garderen, President/Systems Archivist, Artefactual Systems
• Brad Westbrook, Head, Metadata Analysis and Specification Unit, UC San Diego

Libraries, University of California, San Diego
• Mike Winkler, Director, Information Technology and Digital Development, University

of Pennsylvania

Prepared June 2010 by Mark A. Matienzo, Technical Architecture Consultant, for ArchivesSpace 26

3.2 Background Readings and Discussion of Architectural Areas

Background information

Archives

select or appraise

accession

arrange and describe process

finding aids

General International Standard for Archival Description

access reference services

More information

http://archivalsoftware.pbworks.com/Archival-Workflow
http://archivalsoftware.pbworks.com/Archival-Workflow
http://www.ica.org/sites/default/files/isad_g_2e.pdf

Encoded Archival Description

More information

http://www.loc.gov/ead/
http://www.loc.gov/ead/eaddev.html
http://www.loc.gov/ead/eaddesgn.html
http://www.loc.gov/ead/eaddesgn.html
http://www.oclc.org/research/publications/library/2010/2010-04.pdf

Data model

More information

http://archon.org/doc/2.20/index.html
http://archiviststoolkit.org/sites/default/files/Record%20Validation%20Rules.pdf
http://archiviststoolkit.org/sites/default/files/Record%20Validation%20Rules.pdf
http://archiviststoolkit.org/sites/default/files/javadocs/javaDocs2_0_0/org/archiviststoolkit/model/package-summary.html
http://archiviststoolkit.org/sites/default/files/javadocs/javaDocs2_0_0/org/archiviststoolkit/model/package-summary.html
https://wiki.nla.gov.au/download/attachments/15989/Service%2Bframework20081124%2BV%2B0.91.doc
https://wiki.nla.gov.au/download/attachments/15989/Service%2Bframework20081124%2BV%2B0.91.doc
http://wiki.collectionspace.org/display/collectionspace/Candidate+Services+and+Related+Notes
http://wiki.collectionspace.org/display/collectionspace/Candidate+Services+and+Related+Notes

Deployment scenarios

More information

Potential implementations

http://www.cdlib.org/services/dsc/tools/at-archon.html
http://archiviststoolkit.org/sites/default/files/AT%20User%20Group%20SurveyResultsFD.pdf
http://archiviststoolkit.org/sites/default/files/AT%20User%20Group%20SurveyResultsFD.pdf
http://wiki.collectionspace.org/display/collectionspace/Design+notes+for+multi-tenancy+in+CollectionSpace
http://wiki.collectionspace.org/display/collectionspace/Design+notes+for+multi-tenancy+in+CollectionSpace
http://wiki.collectionspace.org/display/collectionspace/Nuxeo+multi-tenancy+issues
http://wiki.collectionspace.org/display/collectionspace/Nuxeo+multi-tenancy+issues

Architectural Areas

Authentication and authorization

More information

http://archiviststoolkit.org/sites/default/files/User%20Permissions.pdf
http://archiviststoolkit.org/sites/default/files/User%20Permissions.pdf
http://www.archon.org/UserManualv2.21.pdf
https://mailman.ucsd.edu/pipermail/atug-l/2010/thread.html#2226
https://mailman.ucsd.edu/pipermail/atug-l/2010/thread.html#2226
http://wiki.collectionspace.org/display/collectionspace/Authentication+Service+Description+and+Assumptions
http://wiki.collectionspace.org/display/collectionspace/Authentication+Service+Description+and+Assumptions
http://wiki.collectionspace.org/display/collectionspace/Authorization+Service+Description+and+Assumptions
http://wiki.collectionspace.org/display/collectionspace/Authorization+Service+Description+and+Assumptions

Potential implementations

http://wiki.collectionspace.org/display/collectionspace/Authentication+and+Authorization+User+Story+Summary
http://wiki.collectionspace.org/display/collectionspace/Authentication+and+Authorization+User+Story+Summary
http://wiki.collectionspace.org/display/collectionspace/Roles+and+Permissions+Requirements
http://wiki.collectionspace.org/display/collectionspace/Roles+and+Permissions+Requirements
http://rice.kuali.org/kim
https://test.kuali.org/confluence/display/KULRICE/KIM+Use+Cases
https://test.kuali.org/confluence/display/KULRICE/KIM+Use+Cases
https://test.kuali.org/confluence/display/KULRICE/KIM+Requirements
https://test.kuali.org/confluence/display/KULRICE/KIM+Requirements
http://rice.kuali.org/documentation/1.0.1.1/UG_KIM/Documents/kimarchitecture.htm
http://rice.kuali.org/documentation/1.0.1.1/UG_KIM/Documents/kimarchitecture.htm
http://rice.kuali.org/documentation/1.0.1.1/UG_KIM/Documents/kimfeatures.htm
http://rice.kuali.org/documentation/1.0.1.1/UG_KIM/Documents/kimfeatures.htm
http://confluence.sakaiproject.org/display/GROUPS/Sakai+3+Groups+Home+Page
http://confluence.sakaiproject.org/display/GROUPS/Sakai+3+Groups+Home+Page
http://confluence.sakaiproject.org/display/KERNDOC/KERN-488+Users+and+Groups
http://confluence.sakaiproject.org/display/KERNDOC/KERN-488+Users+and+Groups
http://wiki.dspace.org/confluence/display/DSPACE/StackableAuthenticationMethods
http://wiki.dspace.org/confluence/display/DSPACE/StackableAuthenticationMethods
http://www.research.ibm.com/people/k/koved/papers/acsac.pdf
http://www.research.ibm.com/people/k/koved/papers/acsac.pdf
http://java.sun.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html
http://java.sun.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html
http://www.fedora-commons.org/confluence/display/FCR30/Fedora+Security+Layer+%28FeSL%29
http://www.fedora-commons.org/confluence/display/FCR30/Fedora+Security+Layer+%28FeSL%29
http://incubator.apache.org/shiro/
http://static.springsource.org/spring-security/site/
http://static.springsource.org/spring-security/site/
http://rice.kuali.org/kim

Storage/persistence layer

More information

Potential implementations

http://wiki.collectionspace.org/display/collectionspace/Design+notes+for+multi-tenancy+in+CollectionSpace#Designnotesformulti-tenancyinCollectionSpace-Storage
http://wiki.collectionspace.org/display/collectionspace/Design+notes+for+multi-tenancy+in+CollectionSpace#Designnotesformulti-tenancyinCollectionSpace-Storage
http://wiki.collectionspace.org/display/collectionspace/Design+notes+for+multi-tenancy+in+CollectionSpace#Designnotesformulti-tenancyinCollectionSpace-Storage
http://wiki.collectionspace.org/display/collectionspace/Design+notes+for+multi-tenancy+in+CollectionSpace#Designnotesformulti-tenancyinCollectionSpace-Storage
http://www.slideshare.net/mkorcuska/sakai-3-version-8
http://www.slideshare.net/mkorcuska/sakai-3-version-8

Import and export

More information

http://wiki.collectionspace.org/display/collectionspace/Import+and+Export+Use+Cases
http://wiki.collectionspace.org/display/collectionspace/Import+and+Export+Use+Cases
http://wiki.collectionspace.org/display/collectionspace/Import+and+Export+User+Story+Summary
http://wiki.collectionspace.org/display/collectionspace/Import+and+Export+User+Story+Summary

http://oleproject.org/wp-content/uploads/2009/11/OLE_FINAL_Report1.pdf
http://oleproject.org/wp-content/uploads/2009/11/OLE_FINAL_Report1.pdf

Reporting

More information

Potential implementations

http://archiviststoolkit.org/sites/default/files/Report%20Samples_Descriptions.pdf
http://archiviststoolkit.org/sites/default/files/Report%20Samples_Descriptions.pdf
https://mailman.ucsd.edu/pipermail/atug-l/2010/thread.html#2327
https://mailman.ucsd.edu/pipermail/atug-l/2010/thread.html#2327
http://wiki.collectionspace.org/display/collectionspace/Reporting+Requirements
http://wiki.collectionspace.org/display/collectionspace/Reporting+Requirements
http://wiki.collectionspace.org/display/collectionspace/Reporting+Service+Description+and+Assumptions
http://wiki.collectionspace.org/display/collectionspace/Reporting+Service+Description+and+Assumptions
https://test.kuali.org/confluence/display/KULRICE/Reporting+Guide
https://test.kuali.org/confluence/display/KULRICE/Reporting+Guide
https://wiki.nla.gov.au/download/attachments/15989/Service%2Bframework20081124%2BV%2B0.91.doc
https://wiki.nla.gov.au/download/attachments/15989/Service%2Bframework20081124%2BV%2B0.91.doc
http://jasperforge.org/projects/jasperreports

http://www.eclipse.org/birt/phoenix/

Workflow management

More information

Potential implementations

http://oleproject.org/wp-content/uploads/2009/11/OLE_FINAL_Report1.pdf
http://oleproject.org/wp-content/uploads/2009/11/OLE_FINAL_Report1.pdf
https://wiki.nla.gov.au/download/attachments/15989/Service%2Bframework20081124%2BV%2B0.91.doc
https://wiki.nla.gov.au/download/attachments/15989/Service%2Bframework20081124%2BV%2B0.91.doc
http://confluence.sakaiproject.org/display/SAKDEV/Workflow
http://rice.kuali.org/kew/
http://www.eclipse.org/jwt/
http://ruote.rubyforge.org/
http://rice.kuali.org/kew/

User interface

More information

http://wiki.collectionspace.org/display/collectionspace/UI+Framework+Evaluation
http://wiki.collectionspace.org/display/collectionspace/UI+Framework+Evaluation
http://wiki.collectionspace.org/display/collectionspace/Choosing+a+UI+Framework
http://wiki.collectionspace.org/display/collectionspace/Choosing+a+UI+Framework
http://confluence.sakaiproject.org/display/3AK/Sakai+3+UX+Development+Guidelines+and+Information
http://confluence.sakaiproject.org/display/3AK/Sakai+3+UX+Development+Guidelines+and+Information

Discovery

More information

http://wiki.collectionspace.org/display/collectionspace/Keyword+Search
http://wiki.collectionspace.org/display/collectionspace/Keyword+Search
http://wiki.collectionspace.org/display/collectionspace/UI+Framework+Evaluation
http://wiki.collectionspace.org/display/collectionspace/UI+Framework+Evaluation
https://wiki.nla.gov.au/download/attachments/15989/Service%2Bframework20081124%2BV%2B0.91.doc
https://wiki.nla.gov.au/download/attachments/15989/Service%2Bframework20081124%2BV%2B0.91.doc

Potential implementations

http://wiki.apache.org/lucene-java/FrontPage
http://wiki.apache.org/solr/

Other integration concerns

More information

Potential implementations

http://wiki.collectionspace.org/display/collectionspace/Common+Services+REST+API+documentation
http://wiki.collectionspace.org/display/collectionspace/Common+Services+REST+API+documentation
http://wiki.collectionspace.org/display/collectionspace/Nuxeo+API+Issues
http://wiki.collectionspace.org/display/collectionspace/Nuxeo+API+Issues
http://kuali.org/rice/ksb
http://java.sun.com/products/jms/

http://www.ietf.org/rfc/rfc4287.txt
http://code.google.com/apis/pubsubhubbub/
http://www.openarchives.org/pmh/
http://www.openarchives.org/ore/

	0 Executive summary
	1 Background on technical planning meeting and report
	1.1 Overview
	1.2 Meeting structure
	1.3 Report structure

	2 Results
	2.1 Fundamental architecture
	2.2 Programming language and application frameworks
	2.3 Persistence/storage layer
	2.4 Import/export
	2.4.1 Overview
	2.4.2 Import formats
	2.4.3 Import containers
	2.4.4 Mapping layer
	2.4.5 Additional considerations

	2.5 Discovery
	2.5.1 Overview
	2.5.2 Architectural design
	2.5.3 Indexing layer
	2.5.4 Search protocols
	2.5.5 Mechanisms for harvesting and syndication

	2.6 User interface
	2.7 Authentication
	2.8 Authorization
	2.9 Workflow management
	2.10 Reporting
	2.11 Additional recommendations by meeting attendees
	2.11.1 Overview
	2.11.2 Project management and development methodology
	2.11.3 Community development and involvement
	2.11.4 Integration concerns
	2.11.5 Multi-tenancy
	2.11.6 Licensing

	3 Addenda
	3.1 List of meeting attendees
	3.2 Background Readings and Discussion of Architectural Areas

